University of Idaho Pedology Laboratory

Soil and Land Resources Division, College of Agricultural and Life Sciences

Soil Series: Tekoa Gravelly Silt Loam

Pedon Number: 81-ID-0554 Classification: Loamy-skeletal, mixed, superactive, mesic Ultic Argixerolls

County: Benewah Date Described: 8/27/1981

Site Information: NRCS # 81-ID-009-4-1 to 4 Location: 1 mi N of River Road, W of Reeds Gulch; 600 ft W & 1200 ft S of the NE corner of Sec. 18, T. 46N., R.1E.

Elevation: 2960 ft Landform: mountain slope, very steep

Slope: 55 % Parent Material/Geology: ash and loess over metasediments

Aspect: S Vegetation: DF/PP/BERE, ROSE, SYAL, PTAQ, AMAL, CARU, HODI, RUPA

Drainage: well drained **Soil Temperature: Collected by:** NRCS personnel, photo no. 6-37-S **Soil Moisture:**

FIELD DATA:

Lab	Horizon	Depth	Field	Co	olor	Structure	(Consisten	ce	Roots	Pores	Clay	Efferv.	Boun-			
No.	No.	(cm)	Texture	Dry	Moist	Structure	Dry	Moist	Wet	Roots	roles	Films	Litery.	dary			
	O1	3-1		Slightly dec	Slightly decomposed needles, leaves, and twigs.												
	O2	1-0		Well decom	Well decomposed organic matter mixed with Mt. St. Helen's volcanic ash.												
1	A11	0-18		10YR 5/2	10YR 3/2	2vf, f gr	sh	fr	so sp	3vf &f, 2m,&1c	2vf&f,1mt, int.		eo	gw			
2	A12	18-30		10YR 5/4	10YR 3/3	1f,m, sbk-1fgr	sh	fr	so sp	3vf &f, 2m&c	2vf &f,1m t, int.		eo	cw			
3	B21t	30-48		10YR 5/4	10YR 3/4	1f,m sbk	sh	fi	ss sp	2vf ,1f &, m	2vf &f t	1t,1thpo	eo	gw			
4	B22t	48-76		10YR 5/2	10YR 3/4	2f,m sbk	h	fi	ss sp	2vf ,1f &, m	2vf &f t	3t,2thpo	eo	cw			
	Cr	76+		Weathered shale (metasediments)													

PHYSICAL DATA:

Lab		Particle	Size Distri	bution (mr	n) – Sand		Silt	Clay	Textural	Coarse	Bulk	Water C	LOI	
No.	VC	С	M	F	VF	Total	Total	Total	Class	Fragments ¹	Fragments ¹ Density		1500	(400 °C)
140.	(2.0-1.0)	(1.0-0.5)	(0.5-0.25)	(0.25-0.1)	0.1-0.05)	(2.0-0.05)	(0.05-0.002)	(<0.002)	Class	(>2 mm)	(Oven-dry)	kPa	kPa	OM
	_			%			%	%		W%	g/cc	%		%
1	1.71	1.41	1.91	5.37	6.74	17.14	66.94	15.92	grsil	49		40.5	12.7	
2	1.01	1.01	1.50	4.54	9.36	17.43	66.99	15.58	vgrsil	52		33.6	10.5	
3	0.31	0.82	1.26	5.56	7.84	15.78	67.83	16.39	grsil	39		30.2	9.6	
4	0.37	0.66	1.03	2.51	10.32	14.91	67.30	17.79	grsil	48		26.6	13.5	
						·								

CHEMICAL DATA:

Lab	pН	pН	pН	Elec	Avail. ²	NH ₄ OAc		ngeable C	ations ³	Exch.	KCl-Ext.	CEC _{pH 7}	ECEC ⁴	Base ⁵	ESP ⁶	Org.	N	C:N
No.	1:5	Sat.	NaF	Cond	P	Ca^{2+}	Mg^{2+}	Na ⁺	K^{+}	H^{+}	Al^{3+}	CLC _{pH} 7	LCLC	Sat.	LSI	C	11	C.IV
				(dS/m)	mg kg ⁻¹	%%												
1		5.9	9.9	0.28	0.0	10.6	2.4	0.1	1.4	18.5		22.6		44		4.34	0.23	19
2		5.8	9.2	0.26	0.7	8.3	1.7	0.1	1.0	15.2		13.6		42		3.07	0.14	22
3		5.7	9.3	0.18	2.2	6.8	1.3	0.1	0.8	12.4		14.5		42		1.44	0.10	15
4		5.6	9.5	0.13	1.6	5.0	1.2	0.1	0.8	11.2		11.7		39		0.75	0.07	11

CHEMICAL DATA (cont.):

Lab	Sat. Paste	Saturated Paste Extract – Soluble Ions								SAR ⁷	Gyngum	CaCO ₃	P	CBD		Pyro.		AOD			
No.	H_2O	Ca^{2+}	Mg^{2+}	Na ⁺	K^+	CO ₃	HCO ₃	Cl-	SO ₄ ²⁻	SAK	Gypsum	CaCO ₃	Ret.	Fe	Al	Fe	Al	Fe	Al	Si	P
	%	cmol _c kg ⁻¹									0	⁄o	%				o	%			
																					1
																					1
1	91													0.95	0.18	0.10	0.09				
2	46													0.98	0.16	0.10	0.08				
3	38													1.15	0.17	0.09	0.05				
4	36													1.19	0.16	0.06	0.04				

- Coarse fragments (>2mm) = (wt. coarse fragments >2mm / wt. soil + coarse fragments)*100 1 Note: This includes gravels, stones, & cobbles, if information is available.
- Available phosphorus was extracted with 0.7M sodium acetate pH 4.8.
- Extractable cations (NH₄OAc_{pH7}) soluble cations (saturated paste extract) = exchangeable cations Note: units are meq/100g or cmol_c kg⁻¹ 3 If there are not any soluble cations assume extractable cations are exchangeable.
- $ECEC = Sum of bases + extractable Al^{3+}$
- Base Sat % = (sum of bases/sum of bases + H^+)*100 or (sum of bases/ECEC)*100 or (sum of bases/CEC_{pH 7})*100
- 6
- $ESP = exchangeable \ sodium \ percent = (Exchangeable \ NH_4OAc_{pH \ 7} \ Na^+/CEC_{pH \ 7})*100$ $SAR = sodium \ adsorption \ ratio = [Na^+] \ / (([Ca^{2+}] + [Mg^{2+}])/2)^{1/2} \quad Note: conc. \ are \ in \ meq/L$

 $NH_4OAc_{pH7} = NH_4OAc$ at pH 7.0 Note:

 $CEC_{pH7} = CEC$ at pH 7.0

CEC_{pH 7} solutions were obtained by leaching soil with 10% acidified NaCl. Solutions were analyzed by steam distillation, Technicon Autoanalyzer or by Lachat Quikchem autoanalyzer for N-NH₄.

Nitrogen and CEC were run on the Technicon Autoanalyzer.

Rock is not accounted for in analyses unless noted on the data sheets.

Soil fraction = wt. of soil (g) / wt. of soil + coarse fragments > 2mm (g)

A soil without rock (>2mm) would have a soil fraction of 1.